If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-1250000=0
a = 1; b = 1; c = -1250000;
Δ = b2-4ac
Δ = 12-4·1·(-1250000)
Δ = 5000001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5000001}}{2*1}=\frac{-1-\sqrt{5000001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5000001}}{2*1}=\frac{-1+\sqrt{5000001}}{2} $
| 7x9/2=5/3-15 | | X2-4x+15=0 | | 1/3(x-4)-1/4(x+2)=1 | | 2k-7=11 | | 6x-2=69 | | 5z−18=18−2z | | X2+4x+16=0 | | 4x+24=3x-7 | | 10y−5=4y+31 | | -16-8=4y | | 3+2x=6+8x | | t(t^2-3)-2=0 | | √2x-5=√4x+7 | | 3^(3x+2)+3^3x=30 | | 5c+4=3c+9 | | 5x+24=6x+19 | | x*18/100=45.79 | | 12^-x=1/144 | | $1,257.67=x(1.02)4+x(1.02)-7 | | 31−13=3(x−9) | | 24x-16=19x29 | | (3y+2)=6 | | 12/2259=t/9 | | 12/2259=9/t | | 38−10l=10+4l | | 2x-3=10x-17 | | 6n−47=9−8n | | c/5-1=9 | | 14x2–2(x–3)2=13x–12 | | 18+8c=2c | | 10a+32=2a | | 51.75-1.25x=4 |